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ABSTRACT I

A discussion is made of nonparametric versus parametric methods for the estimation of
probability densities., A new algorithm for nonpzrazetric density estimation is given and !
its performance compared with state-of-the-art kernel estimation algorithms. ol
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. 1. INTRODUCTION

Two major causes for poor (especially nonrobust) optimfzation theoretic techniques im
statistics are

(1) an inappropriate choice of a parameter (function) space
and

(2) an inappropriate choice of a criterfon function (functional).

"Appropriateness” is determined by a balance between computational feasibility and ap-
proximation to truth, Itis to be expected that the advent of the high speed digital computer
should drastically raise our pain threshold of conputational feasibility. Consequently it is
somevhat surprising that most standard statistical procedures have remained unchanged simce
the 1930's. Many of these involve the estimation of probability densities.

2. DISCUSSION

In 1922 Fisher [1] presented the concept of parametric maximua 1ikelihood estimti
We recall that his development requires the functional form of the unknown dens‘cy £ (xr)

be known. Given a random sample ,xz,...,x } froa £, we seek that value Q;) con-
tained in appropriate parameter spac% ZC€R which maximizes

n
log £ (x]0) =Zlog £0xgle) . —c‘f‘ﬁ @
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§ 2:5., ¢ QU‘ A @
n o
and
, 62 snfo, -1 . H ()
n o 2
(3 log foIBZ)
nE 2
a6
The latter result is particularly appealing, since it states that the parametric maximua
likelihood estimator asymptotically achieves the Cauchy-Schwarz (Cramer-Reo) laser bouad
for E((‘é -8)2], where 566, the class of unbiased estimates for © .
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The optimality properties of parametric maximum likelthood algorithms are likely to be
of little utility if (as is generally the case) we do not have a good idea as to the
functional form of the unknown density. For example, 1f we assume the density is normal, the
maximun likelihood estimatox for the median 6 _ is X . If, in fact, the underlying dis-
tribution is Cauchy, X 4is no better an estimdtor for @ thar any single one of the
observations., In general, if we assume an incorrect func¥lonal form of the density and use
any of the classical parametric techniques for estimating the density, we will find that

ln [ E(f(x) - £(x) )2 x>0 . (%)
e

ne o est,n tru

The pathology of parametric maximum likelihood estimation under real world conditions
should not be unexpected. An optimization-theoretic technique designed to have good per-
formance under very restrictive conditions (e.g., that the functional form of the density
is known) is unlikely to perform well when we step ocutside the domain of these conditions,
We need to devise algorithms which are "optimal"” in a more general and realistic setting.
This point was implicitly raised a quarter century before maximum likelihood by Karl
Pearsen [7]. (For a discussion of the Fisher-Pearson battle on maximum likelihood, the
reader is referred to {13),) He considered a fairly large class of probability densities
characterized by the differential equation

d1l f(x xX-a )

dx - 7
_ bo-l-blx-l-bzx

The estimation of the four parameters is readily carrfed out via the first four sample

moments, Unfortunately, although the Pearson Family contains many of the classical
distributions, it has serfous deficiencies. For example, it contains no multimodal densities.

In order to obtain a practical extension of Pearson’s concept to density estimatfon fin
the general setting where we know only that the underlying density is “smooth”, we must de-~
velop an estimator where the number of characterizing parameters increases with the sample
size, The simple histogram (dating back to John Graunt in 1662 [3]) has such a property
but suffers from discontinuities, These may be eliminated quite readily by connecting mid-
points with straight lines, The extreme "locality" of the histogram 's less easily :
ameliorated, :

Computationally more complicated but possessing better consistency properties than the
histogram is the kernel density estimator (or '"shifted histogram" [12}, [6], [8]). Here, on
the basis of a random sample (xl,xz....,xn] we have the estimator

n

.. x-x
£,0) = ;‘i'; K(T‘i) . : (6) )
=1

where .K i{s any probadbility density having

«
J Iknfey <= @,
- i N
sup [K(y)| <= (8)
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Halyk(n)] =0 . ® o 4
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To minimize the asymptotic integrated mean square error, we have the optimal -
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b= [ > ] o135, (10)
2[ (£"(x)) “dx ,

which gives as asymptotic integrated mean square error

] /5 -4f5 -
mse - 3455175 3 [ [ en? dx] n an

Unfortunately, the design parameter h requires approximate knowledge of (f"(x))zdx .
An iterative algorithm for the estimation of h 1is given in (12], Monte Carlo results
indicate that a twofold overestimation or underestimation of h typically causes & two-~
fold increase of the IMSE over that shown in (ll). A survey of other nonparametric
density estimation techniques is givea in [13].

A new approach motivated by a suggestion_of Good [2] has been considered in [4], [S],
[11), [13]. Here we seek that density féllo(a,b) which maximizes the criterion functional

n [ ]
b
L(f) = ng £(x,) - zakf )% ox, Q2)
§=1 =0 *° .
i.e.,
£®e 12a,b); k =0,1,...,8
£ ) = £® @y =0; k=~0,1,2,...,5-1 ) 1
s £>0 -

j"’f(x)dx =1,
a

The solution to (12) is referred to as the maximum penazlized likelihood estimator. From [S)
: we have

Theorem. The MPLE estimator exists and is unique, . e

~ -

Recently, a discretized approximation to the solution of (12) has been algorithmitized
and {nvestigated by Scott [10], [11]). This work suggests

Theorem., If ‘fn(-) i{s the solution to the MPLE criterion and fréll:(c.b) then

-~ : y
" )
RO St .

b -~
SRR 0 - £ 000 ax a0 (L))
a

-

vhere f.r(-) is the density £ truncated to (a,b). =

-

From a practical standpoint, the performance of % (.) 1s relatively insensitive to the
selection of the design parameters a2 . If we set all the o, = O except for o,, it is
not unusual for a change of o, by a factor of 100 from the thiml to fncrease the IMSE by
less than a factor of 2 .,

In Table 1, we compare the IMSE of the MPLE with that of popular Gaussian kernel estimator
for various densities and sample sizes, Of special note is the fact that although we have
used the optimal (and unobtainable) design parameter for the kernel estimator, we have used
the suboptimal value of @, = 10 throughout for the MPLE estimator.
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TABLE 1

IMSE Values of the MPLE (o, =10) and Gaussian Kernel Density Bstlhatlon
(with optimal h) for Various Distributions and Sample Sizes.

Density n ‘ MPLE Kernel

IMSE IMSE
N(0,1) 25 .0027 0041
100 00079 .00129
400 .00033 00053
AN(-1.5,1) 25 . . ;00159 .00128 .
+HN(1.5,1) 100 .00054 .00052
& 25 00282 00475
100 00084 .00157

3. CONCLUSIONS

The supposed optimality of classical parametric density estimation procedures {is
frequently invalid because the true functional form of the density {is unknown, Never-
theless, we can attack the more general and practical problem of estimating a density
of u:rnown functional form, The maximum penalized likelihood densfty estimator has been
algorithmitized and is now a part of standard statistical software [11), .
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